
Senses require sensors. In the practice of robotics,
the basic senses make do with the most basic of
sensors: mechanical switches for detecting contact
with objects, and photosensitive resistors and

transistors for detecting the presence (or absence) of light.
A robot can perform a remarkable amount of work with
just the sense of touch and the gift of simple sight.

In this month’s installment, you’ll learn about
interfacing switches and photosensors to the Arduino,
along with how to use the information these sensors
provide to interactively command a robot’s motors. These
are the fundamental building blocks of most any
autonomous robot you build. Once you learn how to use
these sensors to do your bidding, you can apply them in
dozens of ways, for all kinds of robotic chores.

AArrdduuiinnoo RRoobboottiiccss::
WWhhaatt WWee’vvee CCoovveerreedd SSoo FFaarr

This article builds upon previous installments in this
series, which is all about the construction and use of the
ArdBot (see Figure 1) — an inexpensive two-wheeled
differentially-steered robot based on the popular Arduino
Uno and compatible microcontrollers. If you’d like to follow
along, be sure to check out the previous three episodes, so
you’re familiar with the plot and characters.

Part 1 introduced the ArdBot project, the Arduino, and
basic programming fundamentals of this powerful
controller.

Part 2 detailed the construction of the ArdBot, using
common materials such as plastic or aircraft grade plywood.

Part 3 covered the Arduino in more depth, and
examined the ins and outs of programming R/C servo
motors with the Arduino.

Making Robots
With The

Part 4 - Getting Feedback With Sensors

By Gordon McComb

FIGURE 1. The
ArdBot robot uses an

Arduino microcontroller
and two R/C servo motors.

Robots need information about the world around them, or they just
stumble about looking stupid. Just like us humans, a robot uses senses

to know when it’s run into something; when it’s light or dark; when it’s
too hot or too cold; when it’s about to fall over; or when it’s found the

way to the cheese at the center of a maze.

SERVO 02.2011 67

Arduino

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:18 AM Page 67

68 SERVO 02.2011

What’s covered here applies to most any robot that
uses the Arduino microcontroller, and that runs on two
motors and rolls on wheels or tracks. You’re free to adapt
the techniques and programming code to whatever bots
you’re constructing. The ArdBot is an expandable platform,
but it’s also a concept that represents the typical desktop-
size robot.

The subject of sensors is pretty involved. There’s no
way to cover all the interesting things in just one article.

So, next month you’ll learn about other kinds of
inexpensive sensors you can use with your ArdBot (or
other robot).

GGeettttiinngg iinn TToouucchh
WWiitthh YYoouurr RRoobboott

Sensors — whether in humans or in
robots — are designed to produce a
reaction. What that reaction is depends
on the nature of the sensation. Type and
quantity matter. We interpret the feeling
of a soft summer breeze as a good
sensation. Increase the amount of air
pressure to hurricane force and decrease
the temperature to something below

freezing, and suddenly the same senses produce a highly
negative reaction.

Touch — also called tactile feedback — is a primitive
reactive sense. The robot determines its environment by
making physical contact; this contact is registered through a
variety of touch sensors. What happens when contact is
made is entirely determined by the programming you apply
within your robot.

Most often, a collision with an object is a cause for
alarm. So, the reaction of the robot is to stop what it’s
doing, and back away from the condition. In other cases,
contact can mean your robot has found its home base, or

that it’s located an enemy bot and is
about to pound the living batteries out
of it.

The lowly mechanical switch is the
most common — and most simple —
form of tactile (touch) feedback
mechanism. Just about any
momentary, spring-loaded switch will
do. When the robot makes contact,
the switch closes, completing a circuit.

I like to use leaf (or lever) switches
(see Figure 2) because they function a
lot like a cat’s whiskers. These things
are sometimes referred to as a
microswitch — after a popular brand
name — but I’ll call them leaf switches
to avoid confusion. Regardless of make
or model, most are easy to mount, and
come with plastic or metal strips of
different lengths that enhance the
sensitivity of the switch.

You can enlarge the contact area
of the leaf by gluing or soldering
bigger pieces of plastic or metal to it.
For example, you can cut up some stiff
music wire (available at hardware
stores) or a cheap wire clothes hanger,
and bend it to some fancy shape.

www.servomagazine.com/index.php?/magazine/article/february2011_McComb

FIGURE 2. The leaf switch acts as a kind of
cat’s whiskers. It’s connected to a digital
I/O pin using a pull-down resistor.

The more you experiment with robotics,
the more you’ll want to build a drawer-

full of reusable parts that easily plug into
your projects. Sensors especially.

With just a bit of wire, some heat
shrink tubing, and a length of snap-off
male header pins you can build modular
sensors that can be shared between
projects. The pins easily plug into a
solderless breadboard. Figure A shows a
photoresistor attached to an eight inch
length of wire which is terminated into a
three-prong male header (only two pins
are used; the third is cut off).

First, start by cutting some 22 or 24
gauge insulated stranded conductor wire
to the desired length. Don’t be stingy with
the wire, but don’t make it so long the
extra gets in the way. Give yourself an
additional inch or two so you can twist
the leads together to make a nice pigtail.

Strip about 1/4” insulation off both
ends, and use your soldering pencil to
pre-tin the wire. Do the same for the leads
on the photocell and the header pins.
Exercise care when soldering to the
photocell leads, as excessive heat can
damage the component. After tinning is
complete, carefully tack-solder the wires
to the leads or pins.

I like to use heat shrink tubing to
finish off the soldered ends. The tubing

makes for a more professional look, plus it
helps prevent short circuits. When applied
properly, it acts as a strain relief to help
keep the wires from pulling apart from
their joints. Buy a small assorted package
of tubing, and use the smallest diameter
for the best fit.

Header pins have a 0.100” spacing
which is a fairly tight space for all but the
most seasoned solder pros. So, you’ll
probably want to snap off a set of three
or four pins, and remove the center pins
to make extra room for your solder joints.

MMaakkiinngg RReeuussaabbllee SSeennssoorr CCoommppoonneennttss

FIGURE A. Use male header pins to
prepare connectors for easy

interchange with your various
projects. The connectors plug into

a solderless breadboard.

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:19 AM Page 68

Solder the end(s) to the leaf. Or, you can use
thin pieces of wood, plastic, or metal. Just be
sure the weight of the extension doesn’t
accidentally activate the switch. You don’t
want false alarms.

The switch may be directly connected to
a motor or, more commonly, it may be
connected to a microcontroller. A typical
wiring diagram for the switch is shown in
Figure 2. The 10 kΩ pull-down resistor is
there to provide a consistent digital LOW (0 volts) output
for the switch when there is no contact. When contact is
made, the switch closes, and the output of the switch goes
HIGH — usually five volts, as shown here.

UUssiinngg LLeeaaff SSwwiittcchheess
aass BBuummppeerrss

Two standard leaf switches mounted to the front of
your ArdBot let it detect when it’s hit something. With
the switches situated to the sides, your bot can determine
if the object is on the left or on the right, and then steer
around it.

Figure 3 shows a pair of leaf switches mounted like
bumpers to the front of the ArdBot. Switches like these
are available at many online electronics outlets, and are
common as surplus. I bought these at All Electronics
(a SERVO Magazine advertiser) for $1.60 a pop.

I haven’t augmented the switches with a larger contact
area, as I’m more interested in demonstrating the concepts
involved. Use your creativity in enhancing the switches to
provide the level of sense detection you want. For example,
right off you can see that the robot is “blind” to small
objects directly between the switches. You can deal with
this either by enlarging the contact area, or (my choice)
using another form of “sense” to avoid collision in the
first place.

To mount each switch, find two suitable holes in the
base of your robot, or drill new ones. Most leaf switches
have three connections: common, normally open (NO), and
normally closed (NC). Wire the common and NO
connections. If space is tight, break off the NC connection
to make room.

Figure 4 shows the diagram for connecting the two
switches to digital pins D2 and D3 of the Arduino. Figure 5
shows the same circuit, but in breadboard view. Use the
upper half of the ArdBot’s 170 tie point solderless
breadboard. The bottom half is already in use by the servo
wiring for the ArdBot (see Part 2 of this series).

On my prototype, I made connectors for the switches
by soldering the two wires to pins of a breakaway male
header. With these, you break off the number of pins you

FIGURE 5. Breadboard view of connecting the bumper
switches. Note that the bottom half of the solderless

breadboard is already in use, wired for the two servo motors.
(See Part 2 of this series for details.)

FIGURE 3. A pair of leaf switches on the
ArdBot. You can attach things to the leaf of each

switch to enlarge its contact area.

FIGURE 4. Schematic view of connecting two bumper switches
to the Arduino microcontroller.

SERVO 02.2011 69

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:19 AM Page 69

want to use. I cut one connector to three pins wide,
removing the middle pin; I soldered the wires from the
switch to the outer two pins. For the other connector, I cut
it to four pins wide, removing the middle two pins. You can
see in Figure 5 how the two connectors plug into the
breadboard.

Important! Make sure all the wires and other
components are firmly seated into their breadboard tie-
point sockets. Loose connections are the second most
common cause of problems when using a solderless
breadboard — the most common is plugging the wires into
the wrong tie points!

Listing 1 shows the demo program bumper.pde. The
ArdBot sets off going forward until one of its front bumper
switches makes contact with an object. The moment the
switch closes, the robot quickly reverses direction, then
turns in the opposite direction of the obstacle. Time delays
are specified in milliseconds. The robot backs up for 500
milliseconds (half a second). It then turns — actually spins —
to the right or left for 1,500 milliseconds (1.5 seconds).

You can experiment with other delay settings,
depending on how fast your robot travels. With faster servo
motors, you can use a shorter delay. The idea is to spin the
robot about one-quarter to one-half turn, so it moves away
from the obstacle.

Note that “left” and “right” (and “front” and “back”)
are somewhat objective in a robot like the ArdBot. Either
end can be the front, so left and right is relative. In my
prototype, I put the two leaf switches on the end that had
more mounting space available. That end became the
“front.” The coding in bumper.pde reflects this design
choice. If your robot seems to behave opposite to what it
should, swap the values in the motion routines (forward,
reverse, etc.). See Part 3 of this series for more details on
what the servo commands do, and how they work.

UUnnddeerrssttaannddiinngg tthhee
bbuummppeerr..ppddee SSkkeettcchh

As with all Arduino sketches, bumper.pde has three
principle parts: declaration, setup() function, and loop()
function.

The declaration area at the top of the sketch sets up
the variables used throughout the program. It also prepares
two objects of the servo class. As you read in Part 3 of
Making Robots with the Arduino, the servo class is
provided as a library that comes with the Arduino
programming tools. You use it to control one or more R/C
servos. The declaration also defines the two leaf switches as
connected to digital pins D2 and D3, and that we’ll be
using the Arduino’s built-in LED (internally connected to pin
D13) as a visual indicator.

In the setup() function, the servos are defined as
connected to digital pins D9 and D10. The pins used for the
LED and two switches are set as outputs and input,
respectively.

The main body of the sketch is the loop() function

/*
ArdBot bumper switch demo
Requires Arduino IDE version 0017
or later (0019 or later preferred)

*/

#include <Servo.h>

const int ledPin = 13; // Built-in LED
const int bumpLeft = 2; // Left bumper pin 2
const int bumpRight = 3; // Left bumper pin 3
int pbLeft = 0; // Var for left bump
int pbRight = 0; // Var for left bump
Servo servoLeft; // Define left servo
Servo servoRight; // Define right servo

void setup() {
servoLeft.attach(10); // Left servo pin D10
servoRight.attach(9); // Right servo pin D9
// Set pin modes
pinMode(bumpLeft, INPUT);
pinMode(bumpRight, INPUT);
pinMode(ledPin, OUTPUT);

}

void loop() {
forward(); // Start forward
// Test bumper switches
pbLeft = digitalRead(bumpLeft);
pbRight = digitalRead(bumpRight);

// Show LED indicator
showLED();

// If left bumper hit
if (pbLeft == HIGH) {
reverse();
delay(500);
turnRight();
delay(1500);

}

// If right bumper hit
if (pbRight == HIGH) {
reverse();
delay(500);
turnLeft();
delay(1500);

}
}

// Motion routines
void forward() {

servoLeft.write(180);
servoRight.write(0);

}

void reverse() {
servoLeft.write(0);
servoRight.write(180);

}

void turnRight() {
servoLeft.write(180);
servoRight.write(180);

}

void turnLeft() {
servoLeft.write(0);
servoRight.write(0);

}

void stopRobot() {
servoLeft.write(90);
servoRight.write(90);

}

void showLED() {
// Show LED if a bumper is hit
if (pbRight == HIGH || pbLeft == HIGH) {

// Turn LED on
digitalWrite(ledPin, HIGH);

}
else {

// Turn LED off
digitalWrite(ledPin, LOW);

}
}

LLiissttiinngg 11 --
bbuummppeerr..ppddee..

70 SERVO 02.2011

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:20 AM Page 70

which repeats indefinitely. It begins by activating the two
servos to move the robot forward. The sketch then uses the
digitalRead statement to store the current state of the two
switches. The instantaneous value of the switches is kept in
a pair of variables (pbLeft and pbRight — the pb for
pushbutton). These variables are used elsewhere.

Of main interest in the loop() function are the two if
statements. Here’s the one that tests the left leaf switch:

if (pbLeft == HIGH)

reverse();

delay(500);

turnRight();

delay(1500);

}

pbLeft == HIGH checks to see if the contents of the
pbLeft variable (set earlier based on the state of the left
leaf switch) is HIGH. If it is, then the left switch is closed,
and the robot has made contact with something. If it’s
LOW, then the switch is open, and the robot continues on
its way.

Bumper.pde also includes a number of user-defined
functions. Most — like forward() and reverse() — relate to
driving the servo motors. Another function, showLED(),
toggles the LED on pin D13 of the Arduino on or off,
depending on whether a switch is closed. Use this as a
visual indicator that the programming code is working as it
should.

SSwwiittcchh TTrriiggggeerrss UUssiinngg
PPoolllliinngg oorr IInntteerrrruuppttss

The programming in bumper.pde relies on what’s
known as polling: The sketch repeatedly checks the status
of the two switches. If a switch is closed, its value goes
from LOW to HIGH; when HIGH, the robot is commanded
to steer to a new heading. The switches are checked —
polled — many times each second.

Polling is an acceptable method when the sketch is
relatively simple, and the demands on the Arduino are light.
For code that is more processing intensive, there is a
remote chance the controller will miss when a leaf switch
has closed. It’ll be busy doing something else in between
polls and be unaware anything has happened.

In truth, you can have a fairly involved sketch and it will
still detect 99 percent of all switch closures. The reason:
The switch will likely be closed for what are very long
periods of time to a microcontroller. For a microcontroller
running at 16 MHz, even a brief 100 millisecond (one-tenth
second) contact is like a lifetime, and so in all likelihood the
switch closure will be registered.

Still, if you absolutely must ensure that even the most
fleeting contact is registered, you might want to consider
using hardware interrupts rather than polling. With an
interrupt, special code is run if — and only when — a
specific external event occurs. Because the main program

/*
ArdBot interrupt bumper demo
Requires Arduino IDE version 0017
or later (0019 or later preferred)

*/

#include <Servo.h>

const int ledPin = 13;
const int bumpLeft = 2;
const int bumpRight = 3;
int pbLeft = 0;
int pbRight = 0;
Servo servoLeft;
Servo servoRight;

void setup() {
servoLeft.attach(10);
servoRight.attach(9);
// Set pin modes
pinMode(bumpLeft, INPUT);
pinMode(bumpRight, INPUT);
pinMode(ledPin, OUTPUT);

// Set up interrupts
attachInterrupt(0, hitLeft, RISING);
attachInterrupt(1, hitRight, RISING);

}

void loop() {
forward(); // Start forward
showLED(); // Show LED indicator

// If left bumper hit
if (pbLeft == HIGH) {
reverse();
delay(500);
turnRight();
delay(1500);
pbLeft = LOW;

}

// If right bumper hit
if (pbRight == HIGH) {
reverse();
delay(500);
turnLeft();
delay(1500);
pbRight = LOW;

}
}

// Motion routines
void forward() {

servoLeft.write(180);
servoRight.write(0);

}

void reverse() {
servoLeft.write(0);
servoRight.write(180);

}

void turnRight() {
servoLeft.write(180);
servoRight.write(180);

}

void turnLeft() {
servoLeft.write(0);
servoRight.write(0);

}

void stopRobot() {
servoLeft.write(90);
servoRight.write(90);

}

void showLED() {
// Show LED if a bumper is hit
if (pbRight == HIGH || pbLeft == HIGH) {

digitalWrite(ledPin, HIGH);
}
else {

digitalWrite(ledPin, LOW);
}

}

// Interrupt handlers
void hitLeft() {

pbLeft = HIGH;
}

void hitRight() {
pbRight = HIGH;

}

LLiissttiinngg 22 --
iinntteerrrruupptt..ppddee..

SERVO 02.2011 71

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:20 AM Page 71

72 SERVO 02.2011

loop() doesn’t have to continually check the state of the
pins, it frees up the controller to do other things. Reaction
time of an interrupt is measured in microsecond timing,
even if the Arduino is busy doing something else. (Actually,
this is not always true, depending on how other hardware
on the controller is being used. But any additional delay is
usually minimal.)

The Arduino Uno supports two hardware interrupts
(the Arduino Mega supports six) internally connected within
the Arduino to digital pins D2 and D3. These are the pins
that the leaf switches are already connected to, so the only
change needed is in the software.

See Listing 2 for interrupt.pde. Here, the bumper.pde
sketch has been revised to “listen” to a state change on
both of the hardware interrupts with the statements:

attachInterrupt(0, hitLeft, RISING);

attachInterrupt(1, hitRight, RISING);

Note that the interrupts are referred to as 0 and 1.
These correspond to pins D2 and D3, respectively. The
labels hitLeft and hitRight are the functions that are called
when the interrupt is triggered. Finally, RISING is a built-in
constant that tells the Arduino to trigger the interrupt on a
LOW-to-HIGH signal transition. This type of transition occurs
when the switch closes.

Both hitLeft and hitRight set their corresponding “pb”
variable to HIGH. The program then immediately exits the
interrupt handler. The next time the Arduino repeats its
loop(), it notices that a pushbutton is HIGH and performs
the needed obstacle avoidance maneuver. (Note also that
the pushbutton value is manually set back to LOW, in
anticipation of the next bump.)

You might be asking why the code to control the
servos isn’t in the interrupt handlers. The reason is this: The

delay statement — which is used to steer the robot around
an obstacle — is disabled while in an interrupt. In any case,
it’s usually best not to place time-intensive functionality
within interrupt handlers.

TToo LLeett BBoouunnccee oorr DDeebboouunnccee??
In a perfect world, mechanical switches would produce

clean, reliable digital signals for our microcontrollers. We
don’t live in a perfect world; instead, we must suffer
something called switch bounce. Instead of a nice LOW-to-
HIGH digital pulse when a switch closes, what we get are
five, 10, maybe even dozens of irregular glitches, all caused
as the metal contacts in the switch settle into position. All
this happens very quickly; usually in just a few milliseconds.

For some applications, it’s absolutely necessary to
debounce the output of a switch. In debouncing, all the
glitches are removed, providing the microcontroller with
that single sweet pulse we want. You can debounce with
some extra hardware: a capacitor and resistor create an RC
network that acts to delay the rise and fall of the switch
signal — that effectively removes the glitches. You can also
do it in software, typically using delays so that the
microcontroller ignores all but the first signal transition.

Both the bumper.pde and interrupt.pde examples don’t
directly use switch debounce. Software delays are already
built into the code, plus R/C servos are slow creatures and
don’t react fast enough for bounce to be a problem. Servos
are commanded in 20 millisecond “frames” — that is, their
operation is updated once every 20 milliseconds. Turns out
that’s about the worst-case duration of bounce glitches
from most switches. So, even with a switch bouncing along
merrily, it has little or no effect on the operation of the
servos.

Should you need to debounce your switch inputs,
there’s a separate class library you can download

and use with the Arduino. The library is called
Bounce, and it’s available from the main
Arduino language reference pages. There’s also
a Debounce code example that comes with the
Arduino programming IDE.

MMoouunnttiinngg AAlltteerrnnaattiivveess,,
MMoorree SSwwiittcchheess

A few quick notes before moving on. So
far, I’ve talked about the two switches in the
front of the robot, situated right and left. Feel
free to put switches anywhere you want. You
might instead have a front and back switch, or
a bunch of switches all around the periphery of
the robot.

If you use more than two switches, you’ll
have to rely on polling, as there are only two
pins that support hardware interrupts (when
using the Arduino Uno). If you use more than
four or five switches, you may want to use a

If you’d like to build the ArdBot,
be sure to start with the
November ‘10 issue of SERVO
Magazine for Part 1 of this series.
Also check out the following
sources for parts:

Example code and more:

Arduino
www.arduino.cc

Fritzing
www.fritzing.org

Prefabricated ArdBot body
pieces with all construction
hardware:

Budget Robotics
www.budgetrobotics.com

Partial list of Arduino resellers:

AdaFruit
www.adafruit.com

HVW Tech
www.hvwtech.com

Jameco
www.jameco.com

Pololu
www.pololu.com

Robotshop
www.robotshop.com

Solarbotics
www.solarbotics.com

Sparkfun
www.sparkfun.com

SSoouurrcceess

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/28/2010 8:41 AM Page 72

parallel-to-serial (PISO) shift register chip, such as the
74HC165 or CD4021. These are integrated circuits that take
eight parallel inputs and provide a serial data output that
can be read by the Arduino. Assuming eight switches, the
PISO reduces the number of required I/O pins from eight to
three. There’s a code example for how to do this at
arduino.cc/en/Tutorial/ShiftIn.

LLeett TThheerree BBee LLiigghhtt
((aanndd lleett yyoouurr AArrddBBoott sseeee iitt!!))

Next to tactile feedback, reacting to light is the most
common robotic sense. In lieu of actual vision, the robot
uses electronic components such as photoresistors and
phototransistors that are sensitive to light. Your bot may
react to the simple absence or presence of light, or it may
be able to measure the brightness, color, or other
qualitative aspect of the light.

Photoresistors — also called photocells, light dependent
resistors, or CdS (for cadmium sulfide) cells — are perhaps
the easiest to use as simple light sensors. The photocell is a
resistor whose value changes depending on the amount of
light that strikes its sensing surface. In darkness, the
photocell has a high resistance, typically in the
neighborhood of 100 kΩ to over one megohm, depending
on the component. The resistance falls as more light strikes
the cell. In high brightness, the resistance may be as low as
1 kΩ to 10 kΩ.

The exact dark/light resistance values differ depending
on the component, and even among photocells of the same
make and model. Typical value tolerance is 10 to 20
percent. You can purchase photocells new, but they’re
common finds in the surplus market. Get a variety pack,
and use your multimeter to “grade” each one. Cracks and
other injury spell doom to a photocell; air and moisture
degrade the sensing surface, rendering it useless. Toss any
that don’t react properly to a nearby desk lamp.

Being a resistor, you can convert the output of a
photocell to a varying voltage merely by connecting another
resistor to it in series, as shown in Figure 6. The value of
the series resistor depends on the dark/light resistance
range of the photocell, and how you want to use it. The
cells I used had a dark resistance of about 40 kΩ and a
light resistance of 30 ohms. In average room brightness,
the cells had 10 kΩ resistors, so I selected a 10 kΩ series
resistor.

The voltage at the point between the photocell and
series resistor is a ratio of the two resistance values. With
the two resistances equal, the divided voltage between
them is one-half of the supply voltage; in the case of five
volts in average room light, the output voltage is 2.5 volts.

FIGURE 6. By connecting another resistor in series with a
photoresistor, the output is converted to a varying voltage.

In this particular arrangement, the voltage increases
under stronger light.

SERVO 02.2011 73

LLiissttiinngg 33 -- ssiimmpplleeccddss..ppddee..
/*
ArdBot CdS cell demo

*/

int cds = 0;

void setup() {
Serial.begin(9600);

}

void loop() {
// Read analog pin A0 and display value
// on Serial Monitor window
cds = analogRead(A0);
Serial.println(cds, DEC);
delay (200);

}

FIGURE 7. Schematic view of connecting two photocells to the
Arduino microcontroller.

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:20 AM Page 73

The voltage decreases in darkness and increases as more
light strikes the photocell.

You will need to experiment with the series resistor to
determine its best value, based on the specific photocells
you use. You might want to try a 50 kΩ or 100 kΩ
potentiometer in place of a fixed resistor, allowing you to
fine-tune the series resistance as needed.

Listing 3 shows simplecds.pde, a basic sketch that
tests the operation of the photocell. Wire the photocell as
shown in Figure 6 and connect the output to analog pin

A0 of your Arduino. Compile and upload the sketch, then
open the serial monitor window. You’ll see a series of
numbers; they correspond to the output voltage of the
sensor converted to a 10-bit (0 to 1023) numeric value. You
should get a low number when all light to the photocell is
blocked, and a higher number under full illumination.

SStteeeerriinngg YYoouurr RRoobboott
WWiitthh aa FFllaasshhlliigghhtt

By using two photocells mounted on each side of your
ArdBot, you can literally steer it by flashlight. Under just
room light, the robot is set to stop, waiting for your
command. Aim the flashlight so that light falls more or less
equally on both photocells, and the robot will move
forward. When the light levels aren’t equal, the robot will
turn toward the photocell that has more light falling on it.

Refer to Figure 7 for a schematic of the two-photocell
setup. Figure 8 shows the same circuit but in breadboard
view. For my prototype, I made small mounts for the
photocells using scrap PVC plastic, then attached the
mounts to the top deck of the ArdBot with metal brackets.
The photocells I used measured 0.29” x 0.25” (elliptical
shape). I drilled holes just slightly smaller, then used a rat-
tail file to enlarge the holes so that the cell just fit inside.
On my prototype, the cells are held in just by friction, but
on yours you can use hot-melt glue or other adhesive that
when set leaves no moisture for a possible short circuit.

(Bear in mind light can strike the photosensitive surface
of the cell from the rear. You may want to add a layer or
two of black tape to prevent light spoilage.)

Figure 9 shows my ArdBot with the two photocell
“eyes” attached to the front. I’ve bent the brackets back a
bit so that the cells point slightly upward.

Refer to Listing 4 for lightsteer.pde. It uses the current
values of the photocells to make quick
steering adjustments to the left or to the
right. In the declarations area, the code:

const int ambient = 600;

const int threshold = 800;

sets two comparison values used elsewhere
in the sketch. You will need to experiment
with these values depending on the room
environment and photocell characteristics!
These values worked for me; you can start
with them, but expect to try other values as
you fine-tune the performance of the
steering.

The ambient value sets the upper level
of just the ambient (natural) light in the

FIGURE 8. Breadboard view of connecting the photocells.

FIGURE 9. Mount the photocells on the top of
the ArdBot — toward the left and right sides —
to make eyes for following the flashlight beam.

74 SERVO 02.2011

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:21 AM Page 74

room. This is the amount of light that hits the
photocells under normal lighting conditions. For me,
the ambient light value was about 520 to 530, so I
made it a little higher (600) for extra headroom.

The threshold value sets the lower level of the
light beamed from your flashlight. I set the value at
800 based on using a nine-LED flashlight (with fresh
batteries), 1-2 feet away from the robot. For best
results, use a bright flashlight near the robot — the
farther away you get, the less light that falls on the
photocells.

MMoorree LLiigghhtt TTrriicckkss
Just by switching around some of the code you

can have your robot run away from you rather than
try to follow you. Or, by placing colored gel filters
over the photocells and using a color LED flashlight
(blue and green are popular), your robot can more
readily discriminate between light to follow and light
to ignore.

You might also add one or two “room light”
sensors that aren’t in the direct line-of-sight of the
flashlight beam. These could be used to set the
ambient light level of the room.

Small lenses over the photocells help to focus the
flashlight beam, improving steering performance and
helping the bot reject any light not directly to the
front.

These are just some of the things you can do to
give your ArdBot (or other Arduino-powered bot) the
gift of sight. Feel free to experiment. Photocells and
other light sensitive components are inexpensive, and
changing the code in an Arduino sketch is absolutely
free.

CCoommiinngg UUpp
In our next installment, you’ll discover even more

senses you can provide, including ultrasonic sound for
measuring distances to objects, and infrared light to
determine the proximity of nasty things that are in
the way.

You’ll also read about ways for your robot to scan
the room to soak up its environment, rather than just
see life through a narrow tunnel in front of it. Exciting
stuff (at least for your ArdBot), so don’t miss it! SV

Gordon McComb can be reached at
arduino@robotoid.com.

LLiissttiinngg 44 -- lliigghhttsstteeeerr..ppddee..
/*
ArdBot steering by light demo
Requires Arduino IDE version 0017
or later (0019 or later preferred)

*/

#include <Servo.h>

// CdS cell reference values
// (you need to experiment)
const int ambient = 600;
const int threshold = 800;

int lightLeft = 0;
int lightRight = 0;

Servo servoLeft;
Servo servoRight;

void setup() {
servoLeft.attach(10);
servoRight.attach(9);

}

void loop() {
// Read light sensors connected to
// analog pins A0 and A1
lightLeft = analogRead(A1);
lightRight = analogRead(A0);

// Stop robot if below ambient
if (lightRight < ambient || lightLeft < ambient) {

stopRobot();
} else {

forward();
// Steer to right if right CdS below threshold
if (lightRight < threshold) {

turnLeft();
delay (250);

}
// Steer to left if left CdS below threshold
forward();
if (lightLeft < threshold) {

turnRight();
delay (250);

}
}

}

// Motion routines
void forward() {

servoLeft.write(180);
servoRight.write(0);

}

void reverse() {
servoLeft.write(0);
servoRight.write(180);

}

void turnRight() {
servoLeft.write(180);
servoRight.write(180);

}

void turnLeft() {
servoLeft.write(0);
servoRight.write(0);

}

void stopRobot() {
servoLeft.write(90);
servoRight.write(90);

}

SERVO 02.2011 75

McComb - Arduino Robot Part 4 - Feb 11.qxd 12/24/2010 11:21 AM Page 75

	067_S.pdf
	068_S
	069_S
	070_S
	071_S
	072_S
	073_S
	074_S
	075_S

